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Abstract

A numerical model is presented for the simulation of viscoelastic flows with complex free surfaces in three space dimen-
sions. The mathematical formulation of the model is similar to that of the volume of fluid (VOF) method, but the numer-
ical procedures are different.

A splitting method is used for the time discretization. The prediction step consists in solving three advection problems,
one for the volume fraction of liquid (which allows the new liquid domain to be obtained), one for the velocity field, one for
the extra-stress. The correction step corresponds to solving an Oldroyd-B fluid flow problem without advection in the new
liquid domain.

Two different grids are used for the space discretization. The three advection problems are solved on a fixed, structured
grid made out of small cubic cells, using a forward characteristics method. The Oldroyd-B problem without advection is
solved using continuous, piecewise linear stabilized finite elements on a fixed, unstructured mesh of tetrahedrons.

Efficient post-processing algorithms enhance the quality of the numerical solution. A hierarchical data structure reduces
the memory requirements.

Convergence of the numerical method is checked for the pure extensional flow and the filling of a tube. Numerical
results are presented for the stretching of a filament. Fingering instabilities are obtained when the aspect ratio is large.
Also, results pertaining to jet buckling are reported.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, industrial codes are available to solve Newtonian flows with free surfaces. In a number of indus-
trial applications – mold filling for instance – free surfaces with complex topological changes must be consid-
ered, which prevents the use of Lagrangian or ALE (Arbitrary Lagrangian–Eulerian) methods. An alternative
is to use Eulerian methods and to solve an additional advection equation, namely
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ou
ot
þ u � ru ¼ 0;
where u is the fluid velocity. In the level-set [34,6,35] or pseudo-concentration [39] approach, the function u is
smooth and the free surface is defined to be the zero level-set. In the VOF (Volume of Fluid) [15] or the volume
tracking method [32,33] approach, the function u denotes the volume fraction of liquid and is a step function
having value one in the liquid, zero in the surrounding vacuum.

Level-set and VOF methods have produced an enormous amount of literature, both methods having their
advantages and drawbacks. Roughly speaking, VOF-like methods suffer from the lack of regularity of the vol-
ume fraction of liquid on the interface. For instance, post-processing algorithms such as SLIC or PLIC are
used in order to reduce numerical diffusion, see for instance [33] for a review. Also, special care is needed when
computing surface tension, see for instance [33,31]. Since the level-set method involves a continuous function,
better accuracy should be expected. However, mass conservation is difficult to obtain so that special proce-
dures must be added, see for instance [42].

Although the VOF model was initially solved using finite volumes, finite element implementations have been
recently proposed in three space dimensions [25,20]. In [19,20,5,4], the VOF formulation was solved using an
order one, implicit splitting algorithm, two different grids being used, see Fig. 1. In the prediction step, advec-
tion was solved on a structured grid of small cubic cells. In the correction step, diffusion was solved on an
unstructured finite element tetrahedral mesh. The reason for using two different grids are the following. Firstly,
the advection step is much easier to implement and requires less CPU time on a structured grid rather on a gen-
eral unstructured finite element mesh. Secondly, the size of the structured cells should be small compared to the
size of the unstructured finite element mesh (typically three to five times smaller), so that numerical diffusion of
the volume fraction of liquid is as small as possible. Thirdly, the use of unstructured finite elements during the
diffusion step of the algorithm allows computational domains with complex shapes to be considered. This
approach has been successfully applied to Newtonian flows with complex free surfaces, see [19,20,5,4]. Our goal
is to extend it to Non-Newtonian (viscoelastic) computations.

Recently, viscoelastic flows with free surfaces have received much attention, see for instance [40,43,37,29,2].
In a number of papers, the filament stretching rheometer was considered, this experiment being well suited to
Lagrangian computations in two [43,37] and three space dimensions [29,2]. However, Lagrangian or ALE
computations are not well suited to describe complex topology changes observed when cavitation or breakage
occurs in the filament, whereas Eulerian formulations (level-set and VOF like methods) seem to be more
appropriate. Two-dimensional computations of viscoelastic flows using the VOF method have already been
presented. For instance in [40,16], the capabilities of the VOF method has been demonstrated for a number
of problems such as jet swell, jet buckling or impacting drops. Also, two-dimensional computations using
the VOF method and CONNFFESSIT like models have been presented in [13]. It should be mentioned that
the level set method has also been successfully used for viscoelastic fluids with free surfaces in [11] using the
hybrid particle level set method of [10].
Two grids are used for the computations. In order to reduce numerical diffusion and to simplify the implementation, the volume
n of liquid is computed on a structured grid of small cells. The velocity, pressure and extra-stress are computed on an unstructured
lement mesh with larger size. The symbol 1 (resp. 0) denotes a cell completely filled (resp. empty). The cells which are partially filled
ded.
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The goal of this paper is to extend the three-dimensional Newtonian model described in [20] to viscoelastic
computations. In the next section, the mathematical model is presented. The problem unknowns are the veloc-
ity, pressure and extra-stress in the liquid region, plus the volume fraction of liquid in the whole cavity con-
taining the liquid. In Section 3, an order one, implicit splitting algorithm is proposed. The prediction step
consists in solving three advection problems, one for the volume fraction of liquid, one for the velocity field,
one for the extra-stress. The correction step then corresponds to solving an Oldroyd-B flow problem without
advection. In Section 4, the space discretization is considered, two different grids being used. The three advec-
tion problems are solved on a fixed, structured grid made out of small cubic cells, using a forward character-
istics method. The Oldroyd-B flow problem without advection is then solved using continuous, piecewise
linear stabilized finite elements on a fixed, unstructured mesh of tetrahedrons. Efficient post-processing algo-
rithms enhance the quality of the numerical solution. A hierarchical data structure reduces the memory
requirements. Numerical results are presented in Section 5. First, convergence of the numerical model is
checked for the pure extensional flow and the filling of a tube. Then, numerical results are reported for the
stretching of a filament and for jet buckling.

2. The mathematical model

Let K be a cavity of R3 in which an Oldroyd-B fluid is confined, and let T > 0 be the final time of the sim-
ulation. At time t, the liquid region is denoted X(t). Finally, let QT be the space–time domain containing the
liquid
Fig. 2.
occupi
QT ¼ fðx; tÞ 2 K� ð0; T Þ; x 2 XðtÞ; 0 < t < Tg;

and let RT be the space–time free surface between the liquid and the surrounding air. The notation is reported
in two space dimensions in Fig. 2.

In the liquid region, the velocity field u : QT ! R3, the pressure field p : QT ! R and the symmetric extra-
stress tensor field r : QT ! R3�3 must satisfy:
q
ou

ot
þ qðu � rÞu� 2gs div�ðuÞ þ rp � divr ¼ qg;

divu ¼ 0;

rþ k
or

ot
þ ðu � rÞr�rur� rruT

� �
� 2gp�ðuÞ ¼ 0.
Calculation domain for the stretching of a filament in two space dimensions. At initial time, the viscoelastic fluid is at rest and
es the domain X(0). At t > 0, the upper plate moves at given velocity.
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Here q is the density, g is the gravity, gs P 0 and gp > 0 are the solvent and polymer viscosities, k is the relax-
ation time, ($u)ij = oui/oxj is the velocity gradient, �ðuÞ ¼ 1

2
ðruþruTÞ is the strain rate tensor.

Let u : K� ½0; T � ! R be the volume fraction of liquid. The function u is a step function, equals one if
liquid is present and zero if it is not; thus u is the characteristic function of the liquid region
XðtÞ ¼ fx 2 K; uðx; tÞ ¼ 1g.

Since the interface moves with the liquid, the function u must satisfy (in a weak sense)
ou
ot
þ u � ru ¼ 0 in QT . ð1Þ
From a Lagrangian point of view, the function u is constant along the trajectories of the fluid particles. More
precisely, u(X(t), t) = u(X(0), 0), where X(t) is the trajectory of a fluid particle, thus X 0(t) = u(X(t), t).

Initial and boundary conditions are as follows. At the initial time, the volume fraction of liquid u(Æ, 0) is
given, which defines the liquid region,
Xð0Þ ¼ fx 2 K; uðx; 0Þ ¼ 1g;

see Fig. 2 for the notations in two space dimensions. The initial velocity field u and extra-stress tensor r are
then prescribed in X(0). Let us now turn to the boundary conditions for the velocity field. It is assumed that no
external forces act on the free surface RT (effects of surface tension are neglected):
�pnþ ð2gs�ðuÞ þ rÞn ¼ 0 on RT ; ð2Þ

where n is the unit outer normal of RT. Neglecting surface tension effects may not be correct in many appli-
cations however, we did not implement surface tension for the following reasons. Firstly, realistic results can
be obtained when including viscoelastic effects and without considering surface tension forces, see the numer-
ical results of Section 5. Secondly, even though accurate procedures are available in VOF-like methods to
compute surface tension [14,17,33,30], the mesh size required to obtain a good approximation of curvature
would be too small to allow viscoelastic computations in three space dimensions.

On the boundary of the liquid region being in contact with the walls (that is to say the boundary of the
cavity K, see Fig. 2), essential boundary conditions (that is to say imposed velocity components) or natural
boundary conditions (that is to say b.c. which are not explicitly enforced but which are implicitly included
in the weak formulation) can be imposed for the velocity and the extra-stress. Let us, for instance, consider
the two following situations: (i) a jet emerging from a die; (ii) the stretching of a filament, see Fig. 3. In case
(i), both the velocity and extra-stress are imposed at the inflow boundary. Either slip or no-slip boundary con-
ditions apply on the other boundaries of the cavity K. If no-slip conditions are enforced for the velocity, then
Fig. 3. Boundary conditions. Top: jet emerging from a die. Bottom: stretching of a filament.
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no other conditions apply. If slip boundary conditions are enforced that is u Æ n = 0, then the fluid tangent
force should also be set to zero, namely
�pnþ 2gs�ðuÞ þ rð Þnð Þ � ti ¼ 0; i ¼ 1; 2; ð3Þ

where t1 and t2 are two unit vectors tangent to the boundary of the cavity. In case (ii), the velocity is imposed
on the top and bottom sides of the cavity whereas (2) applies on the lateral side. Boundary conditions (2) and
(3) are straightforward to implement in the framework of finite element methods since the corresponding
terms vanish after integration by parts in the variational formulation, see Section 4.2 hereafter.

3. Time discretization: an implicit splitting algorithm

The implicit, order one, splitting algorithm described in [19,20,5] for Newtonian flows is extended here to
viscoelastic situations. This splitting algorithm allows advection phenomena to be decoupled from other phe-
nomena. The reader should note that a similar algorithm has already been presented for viscoelastic flow com-
putations in fixed domains [23].

Let 0 = t0 < t1 < t2 < � � � < tN = T be a subdivision of the time interval [0, T], define Dtn = tn � tn�1 the nth
time step, n = 1, 2, . . . , N, Dt the largest time step. At time tn�1, assume that an approximation un�1 : K! R

of the volume fraction of liquid is known, which defines the liquid region:
Xn�1 ¼ fx 2 K; un�1ðxÞ ¼ 1g.

Also assume that approximations of the velocity un�1 : Xn�1 ! R3 and the extra stress rn�1 : Xn�1 ! R3�3 are
available. Then un, Xn, un, rn are computed by means of a splitting algorithm as illustrated in Fig. 4. The pre-
diction step consists in solving three advection problems, which yields the new volume fraction of liquid un,
the new liquid region Xn, the predicted velocity un�1

2 : Xn ! R3 and the predicted extra-stress rn�1
2 : Xn ! R3�3.

Then, the correction step is performed, a generalized Stokes problem is solved, which yields the new velocity
un : Xn ! R3 and pressure pn : Xn ! R. The new extra-stress rn : Xn ! R3�3 is then updated from the Old-
royd-B constitutive equation.

3.1. Prediction step: advection

The prediction step consists in solving between time tn�1 and tn the three advection problems:
ov

ot
þ ðv � rÞv ¼ 0; ð4Þ

os

ot
þ ðv � rÞs ¼ 0; ð5Þ

ow
ot
þ v � rw ¼ 0; ð6Þ
with initial conditions
vðtn�1Þ ¼ un�1;

sðtn�1Þ ¼ rn�1;

wðtn�1Þ ¼ un�1.
Fig. 4. The splitting algorithm.
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These three problems can be solved exactly using the method of characteristics [26–28], the trajectories of the
velocity field being straight lines. Indeed, the trajectories are given by X 0(t) = v(X(t), t), but since v is constant
along the trajectories, we have X 0(t) = v(X(tn�1), tn�1) = un�1(X(tn�1)). Let un�1

2; rn�1
2, un denote the solution at

time tn of 4, 5, 6, respectively. We thus have
un�1
2ðxþ Dtnun�1ðxÞÞ ¼ un�1ðxÞ; ð7Þ

rn�1
2ðxþ Dtnun�1ðxÞÞ ¼ rn�1ðxÞ; ð8Þ

unðxþ Dtnun�1ðxÞÞ ¼ un�1ðxÞ ð9Þ
for all x belonging to Xn�1. Once un is known in the cavity K, then the liquid region at time tn is defined by
Xn ¼ fy 2 K; unðyÞ ¼ 1g.
At this point it should be stressed that after the prediction step, the obtained velocity un�1
2 is not divergence

free. The divergence free property is obtained after the correction step, see Eqs. (10) and (11).
3.2. Correction step: Stokes and Oldroyd-B

The new liquid region Xn being known, the predicted velocity un�1
2 : Xn ! R3 and the extra-stress

rn�1
2 : Xn ! R3�3 being also known, the new velocity un is obtained by solving a generalized Stokes problem:
q
un � un�1

2

Dtn
� 2gs div�ðunÞ þ rpn � divrn�1

2 ¼ qg in Xn; ð10Þ

divun ¼ 0 in Xn; ð11Þ
then, the new extra-stress rn is obtained from Oldroyd-B constitutive equation:
rn þ k
rn � rn�1

2

Dtn
�runrn�1

2 � rn�1
2ðrunÞT

 !
� 2gp�ðunÞ ¼ 0. ð12Þ
4. Space discretization and implementation

Two distinct grids are used to solve the prediction and correction steps. Since the shape of the cavity K
can be complex (this is for instance the case in mold filling or extrusion processes), finite element techniques
are well suited for solving (10)–(12) using an unstructured mesh. On the other hand, a structured grid of
cubic cells is used to implement (7)–(9). The reasons for using a structured grid is the following. Firstly,
the method of characteristics can be easily implemented on structured grids. Secondly, the size of the cells
can be tuned in order to control numerical diffusion when projecting (7)–(9) on the structured grid. Numer-
ical experiments reported in [19,20,5] have shown that choosing the cells spacing three to five times smaller
than the mesh spacing is a good trade-off between numerical diffusion and computational cost or memory
storage.

4.1. Advection step: structured grid of cubic cells

The implementation of (7)–(9) is now discussed. Assume that the grid is made out of cubic cells Cijk of size
h. Let un�1

ijk , un�1
ijk and rn�1

ijk be the approximate value of u, u and r at center of cell number (ijk) and time tn�1.
According to (7)–(9), the advection step on cell number (ijk) consists in advecting un�1

ijk , un�1
ijk and rn�1

ijk by
Dtnun�1

ijk and then projecting the values onto the structured grid. An example of cell advection and projection
is presented in Fig. 5 in two space dimensions.

This advection algorithm is unconditionally stable with respect to the CFL condition – velocity times the
time step divided by the cells spacing h – and O(Dt + h2/Dt) convergent, according to the theoretical results



Fig. 5. An example of two-dimensional advection of un�1
ij by Dtnun�1

ij , and projection on the grid. The advected cell is represented by the
dashed lines. The four cells containing the advected cell receive a fraction of un�1

ij , according to the position of the advected cell. In this
example, the new values of the volume fraction of liquid un are updated as follows: un

iþ1;jþ1 ¼ un
iþ1;jþ1 þ 3=16un�1

ij ; un
iþ2;jþ1 ¼ un

iþ2;jþ1þ
9=16un�1

ij ; un
iþ1;jþ2 ¼ un

iþ1;jþ2 þ 1=16un�1
ij ; un

iþ2;jþ2 ¼ un
iþ2;jþ2 þ 3=16un�1

ij .
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available for the characteristics-Galerkin method [26–28]. However, this algorithm has two drawbacks.
Indeed, numerical diffusion is introduced when projecting the values of the advected cells on the grid (remem-
ber that the volume fraction of liquid is discontinuous across the interface). Moreover, if the time step is too
large, two cells may arrive at the same place, producing numerical (artificial) compression.

In order to enhance the quality of the volume fraction of liquid, two post-processing procedures have been
implemented. We refer to [19,20,5] for a description in two and three space dimensions. The first procedure
reduces numerical diffusion and is a simplified implementation of the SLIC (Simple Linear Interface Calcula-
tion) algorithm [7,22,33], see Figs. 6 and 7 for a simple example. In the SLIC procedure, if a cell is partially filled
with liquid, then the volume fraction of liquid is condensed along the cells faces, edges or corners (see Fig. 8),
according to the volume fraction of liquid of the neighbouring cells (see Fig. 9).

The second procedure removes artificial compression (that is values of the volume fraction of liquid greater
than one), which may happen when the volume fraction of liquid advected in two cells arrive at the same place,
see Fig. 10. The aim of this procedure is to produce new values un

ijk which are between zero and one and is as
follows. At each time step, all the cells having values un

ijk greater than one (strictly) or between zero and one
(strictly) are sorted according to their values un

ijk. This can be done in an efficient way using quick sort algo-
rithms. The cells having values un

ijk greater than one are called the dealer cells, whereas the cells having values
un

ijk between zero and one are called the receiver cells. The second procedure then consists in moving the fraction
of liquid in excess in the dealer cells to the receiver cells, see [19,18] for details.
Fig. 6. Numerical diffusion during the advection step. At time tn, the cells have volume fraction of liquid one or zero. The velocity u is
horizontal, the time step Dt is chosen so that uD t = 1.5h where h is the cells spacing.

Fig. 7. Reducing numerical diffusion using the SLIC algorithm. Before advecting a cell partially filled with liquid, the volume fraction of
liquid is condensed along the cells boundaries, according to the neighbouring cells.



Fig. 8. SLIC algorithm. If the cell is partially filled with liquid, the liquid is pushed along a face, an edge, or a vertex of the cell, according
to the neighbours volume fraction of liquid.

Fig. 9. SLIC algorithm. The volume fraction of liquid in a cell partially filled with liquid is pushed according to the volume fraction of
liquid of the neighbouring cells. Two examples are proposed. Left: the left and bottom neighbouring cells are full of liquid, the right and
top neighbouring cells are empty, the liquid is pushed at the bottom left corner of the cell. Right: the bottom neighbouring cell is full of
liquid, the right neighbouring cell is empty, the other two neighbouring cells are partially filled with liquid, the volume fraction of liquid is
pushed along the left side of the cell.

Fig. 10. An example of numerical (artificial) compression.
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Validation of these procedures using standard two-dimensional test cases taken from [1,32] have been per-
formed in [5]. Translation, rotation and stretching of a circular region of fluid are shown in Fig. 11. For more
details we refer to Section 5.1 of [5].

In a number of industrial applications, the shape of the cavity containing the liquid is complex. Therefore, a
special data structure has been implemented in order to reduce the memory requirements used to store the cell
data. An example is proposed in Fig. 12. The cavity containing the liquid is meshed into tetrahedrons. Without
Fig. 11. Validation of the advection step. Left: Translation of a circular region of liquid, the interface is shown at time t = 0 and t = 0.06 s.
Middle: Rotation of a circular region of liquid, the interface is shown at time t = 0 and t = 0.126 s. Right: Single vortex test case, the
interface is shown at time t = 1 (maximal deformation) and t = 2 s (return to initial circular shape).



Fig. 12. The hierarchical window-block-cell data structure used to implement cells advection in the framework of the 2D filament
stretching.
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any particular cells data structure, a great number of cells would be stored in the memory without ever being
used. The data structure makes use of three hierarchical levels to define the cells. At the coarsest level, the cav-
ity is meshed into windows which can be glued together. Each window is then subdivided into blocks. Finally,
a block is cut into smaller cubes, namely the cells (ijk). When a block is free of liquid (u = 0), it is switched off,
that is to say the memory corresponding to the cells is not allocated. When liquid enters a block, the block is
switched on, that is to say the memory corresponding to the cells is allocated.

Once values un
ijk, u

n�1
2

ijk and r
n�1

2
ijk have been computed on the cells (ijk), values are interpolated at the vertexes

P of the finite element mesh. More precisely, the volume fraction of liquid at vertex P is computed by consid-
ering all the cells (ijk) contained in the triangles K containing the vertex P, see Fig. 13, using the following
formula:
Fig. 13
fractio
unðP Þ ¼

P
K

P2K

P
ðijkÞ�K

/P ðxijkÞun
ijk

P
K

P2K

P
ðijkÞ�K

/P ðxijkÞ
; ð13Þ
where xijk denotes the center of cell (ijk) and /P is the finite element basis function attached to vertex P.
Similar formula hold for the velocity and extra-stress. Then, the liquid region is defined as follows. An ele-
ment (tetrahedron) of the mesh is said to be liquid if (at least) one of its vertexes has a volume fraction of
liquid un > 0.5, see Fig. 14. The computational domain Xn used for solving (10)–(12) is then defined to be
the union of all liquid elements. At this point, we would like to stress that the values of the volume fraction
of liquid on the unstructured finite element mesh are only used in order to define the liquid region. Again,
advection of the volume fraction of liquid only occurs on the structured cells, and not on the unstructured
. Interpolation of the volume fraction of liquid from the structured cells to the unstructured finite element mesh. The volume
n of liquid at vertex P depends on the volume fraction of liquid in the shaded cells.



Fig. 14. A two-dimensional example of liquid element. The values of the volume fraction of liquid u at the center of the cells are known. A
value u is then interpolated at the vertexes of the finite element mesh. The displayed triangle has at least one vertex with value u greater
than 0.5. Therefore, the triangle is liquid and the velocity, the pressure and the extra-stress will be computed at the three vertexes of the
triangle.
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finite element mesh. Also, the volume constraint is not directly enforced in the numerical model. However, if
numerical diffusion of the volume fraction of liquid is small, then the volume constraint will be satisfied.
This is precisely the goal of the two post-processing procedures that have been added. In all the computa-
tions, we have observed that the (numerical) diffusion layer of the volume fraction of liquid (0 < u < 1) is of
the order of one or two cells and that the volume constraint is satisfied up to 1%. In order to achieve this
goal, the two post-processing procedures must be switched on and the cells spacing must be three to five
times smaller than the mesh spacing.
4.2. Correction step: Stokes and Oldroyd-B with finite elements

Let us now turn to the finite element techniques used for solving (10)–(12). We follow [3,24] and use an
EVSS (Elastic Viscous Split Stress) formulation with continuous, piecewise linear stabilized finite elements.
More precisely, given the predicted velocity un�1

2, an extra-variable Dn�1
2 defined by
Z

Xn
Dn�1

2 : Edx ¼
Z

Xn
�ðun�1

2Þ : Edx 8E;
is introduced for stability purposes. No boundary conditions apply to Dn�1
2. This equation results in solving a

diagonal linear system provided a mass lumping quadrature formula is used. Since the mass lumping quadra-
ture formula is order two accurate in space, the global accuracy of the method is not affected. Once Dn�1

2 is
computed, the new velocity un and pressure pn are obtained by solving the following Stokes problem:
Z

Xn
q

un � un�1
2

Dtn
� vdxþ 2ðgs þ gpÞ

Z
Xn
�ðunÞ : �ðvÞdx�

Z
Xn

pn divvdx

¼
Z

Xn
2gpDn�1

2 � rn�1
2

� �
: �ðvÞdxþ

Z
Xn

qg � vdx 8v;
Z

Xn
divunqdxþ

X
K�Xn

aK

Z
K

q
un � un�1

2

Dtn
þrpn � divrn�1

2 � qg

 !
� rqdx ¼ 0 8q.

ð14Þ
Here K denotes a tetrahedron, aK is the local stabilization coefficient defined by
aK ¼
jKj

2
3

12ðgsþgpÞ
if ReK 6 3;

jKj
2
3

4ReK ðgsþgpÞ
else,

8><
>:
where the local Reynolds number ReK is defined by
ReK ¼
qjKj

1
3 max

x2K
jun�1

2ðxÞj

2ðgs þ gpÞ
.
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Note that in (14) the corrected velocity un can be prescribed on the boundary of the cavity K whenever needed,
see Fig. 3 for a discussion related to boundary conditions. Also note that the boundary condition (2) is implic-
itly contained in the above variational formulation. Indeed, (14) has been obtained by multiplying the momen-
tum equation with a test function v, integrating by parts, and using the boundary condition (2). Thus, from the
implementation point of view, no additional work is required to enforce (2). All the degrees of freedom cor-
responding to velocity and pressure are stored in a single matrix and the linear system is solved using the
GMRES algorithm with a classical incomplete LU preconditioner and no restart.

It then remains to update the extra-stress rn from Oldroyd-B constitutive equation:
1þ k
Dtn

� �Z
Xn

rn : sdx ¼ k
Z

Xn

1

Dtn
rn�1

2 þrunrn�1
2 þ rn�1

2ðrunÞT
� �

: sdxþ 2gp

Z
Xn
�ðunÞ : sdx 8s.
Here rn must be prescribed at the inflow boundary, if there is one, see Fig. 3. Again, this equation results in
solving a diagonal linear system whenever a mass lumping quadrature formula is used. In [3,24] it is proved
that this finite element scheme is convergent for stationary problems in fixed computational domains. More
precisely, it is proved that the approximate velocity gradient, the approximate pressure and the approximate
extra-stress converge with order one in space in the L2 norm, even when the solvent viscosity is small com-
pared to the polymer viscosity.

Finally, once the new velocity un and extra-stress rn are computed at the vertexes of the finite element mesh,
values are interpolated at the center of the cells (ijk):
un
ijk ¼

X
P

/P ðxijkÞun
P ; ð15Þ
where P denotes a mesh vertex, xijk denotes the center of cell (ijk), /P denotes the finite element basis function
corresponding to vertex P and un

P is the velocity at vertex P. A similar formula is used for the extra-stress rn
ijk.

Please note that the volume fraction of liquid is not interpolated from the finite element mesh to the cells.
Indeed, the volume fraction of liquid is only computed on the structured cells. It is interpolated on the unstruc-
tured finite element mesh only in order to define the liquid region after the prediction step, see the end of
Section 4.1.
4.3. Implementations details

The memory storage is the following. For each cubic cell, the volume fraction of liquid, the velocity and the
extra-stress must be stored in order to implement (7)–(9), therefore 1 + 3 + 6 = 10 values. For each vertex of
the finite element mesh, the velocity, the pressure, the extra-stress and the EVSS field D = �(u) must be stored,
therefore 3 + 1 + 6 + 6 = 16 values. The code is written in the C++ programming language and the finite ele-
ment data structure is classical. The data structure of the cells is as follows. Each cell is labelled by indices (ijk)
within a block. Also, each block is labelled by indices (ijk) within a window, see Fig. 12.

In order to perform efficient interpolation between the two grids (structured cells/unstructured finite ele-
ments), the following data structure is needed. In order to implement interpolation from the finite element
mesh to the cells, Eq. (15), the index of the finite element (tetrahedron) containing each cell is needed. Alter-
natively, in order to implement interpolation from the cells to the finite element mesh, Eq. (13), the list of the
cells contained in each finite element (tetrahedron) is required. This additional data structure is built at the
beginning of each computation. It can be stored in case several computations are performed with the same
grids. The additional CPU time required to build this data structure is small (less than 1%) compared to
the total CPU time.

5. Numerical results

Several tests are presented in this section. Firstly, our numerical model is validated for two simple flows,
namely an elongational flow and the filling of a tube. Then, numerical experiments corresponding to the
stretching of a filament and jet buckling are considered.
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5.1. Elongational flow

At the initial time, liquid at rest occupies a cylinder with radius R0 = 0.0034 m and height L0 = 0.0019 m.
Then, the velocity field on the top and bottom sides of the cylinder is imposed to be
Fig. 16
right:
uðx; y; z; tÞ ¼
� 1

2
_�0x

� 1
2

_�0y

_�0z

0
B@

1
CA;
with _�0 ¼ 4:68 s�1, whereas (2) applies on the lateral sides. Since there is no inflow velocity, no boundary
conditions have to be enforced for the extra-stress. A simple calculation shows that, for all time t, the
above velocity field satisfies the momentum equations, that the extra-stress tensor is homogeneous, for
instance
rzzðx; y; z; tÞ ¼
2gp _�0

1� 2 _�0k
1� e�ð

1
k�2 _�0Þt

� �
;

Fig. 15. Elongational flow: 2D cut of the mesh at z = 0; left: coarse mesh; right: fine mesh.

. Elongational flow: shape of the liquid region (the volume corresponding to volume fraction of liquid u > 0.5 is shown); left: t = 0;
t = 0.3 s.
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and that the liquid region remains a cylinder with radius RðtÞ ¼ R0e�
1
2

_�0t. Indeed, the trajectories of the fluid
particles are defined by X 0(t) = u(X(t), t) which yields
Fig. 17
as a fu
X ðtÞ ¼ X ð0Þe�1
2

_�0t

Y ðtÞ ¼ Y ð0Þe�1
2

_�0t

ZðtÞ ¼ Zð0Þe _�0t

0
B@

1
CA.
. Elongational flow; top: vertical velocity uz along the vertical axis Oz at final time t = 0.3 s; bottom: extra-stress rzz at z = 0.0006 m
nction of time.

Fig. 18. Filling of a pipe; notations and isovalue u = 0.5 for a Newtonian fluid at times t = 0, 0.6, 1.2, 1.8, 2.4, 3.0 s.



704 A. Bonito et al. / Journal of Computational Physics 215 (2006) 691–716
Two meshes are used for the computations. The computational domain is the block [�0.004 m,
0.004 m] · [�0.004 m, 0.004 m] · [0 m, 0.03 m] in the xyz directions. The 3D meshes are obtained by extruding
the 2D meshes shown in Fig. 15, from z = 0 to z = 0.03 m, and then cutting the prisms into tetrahedrons. The
coarse (resp. fine) mesh has 62,000 (resp. 462,000) vertexes and mesh size 0.00035 m (resp. 0.000175 m). When
using the coarse (resp. fine) mesh, the cell size is 0.0001 m (resp. 0.00005 m). The time step was Dt = 0.01 s for
the coarse mesh (resp. D t = 0.005 s for the fine mesh) so that the CFL number of the cells – velocity times the
time step divided by the cells spacing – equals 0.9 at time t = 0 and 3.7 at time t = 0.3.

Numerical results corresponding to 0.05% by weight Polystyrene (the parameter values are taken from [8],
q = 1030 kg/m3, gs = 9.15 Pa s, gp = 25.8 Pa s, k = 0.421 s, thus De ¼ k _�0 ¼ 1:97) are reported in Figs. 16 and
17. Clearly the computed velocity agrees perfectly with the exact velocity whereas the error for the extra-stress
is within 10% on the fine grid. The fact that the velocity is more precise than the extra-stress is not surprising
since the finite element method is expected to be of order two (in the L2 norm and in a fixed domain) for the
velocity but only of order one for the extra-stress.
5.2. Filling of a pipe

Consider a rectangular pipe of dimensions [0, L1] · [0, L2] · [0, L3] in the xyz directions, where L1 = 4 m,
L2 = 1 m, L3 = 0.3 m. At the initial time, the pipe is empty. Then, fluid enters from the left side (x = 0) with
velocity and extra-stress given by
Table
Filling

Mesh

Coarse
Interm
Fine
uðx; y; z; tÞ ¼
ux

0

0

0
B@

1
CA; rðx; y; z; tÞ ¼

rxx rxy 0

rxy 0 0

0 0 0

0
B@

1
CA; ð16Þ
with ux(y) = 6y(L2 � y), rxx(y) = 72gsk(2y � L2)2 and rxy(y) = �6gp(2y � L2). The boundary conditions are
detailed in Fig. 18 and are the following. On the top and bottom sides (y = 0 and y = L2), no-slip boundary
conditions apply. On the front and rear sides (z = 0 and z = L3), slip boundary conditions apply. On the right
side (x = L1) the fluid is free to exit the pipe with zero vertical velocity. The parameter values are taken from
[40] subsection 6.1 and are the following: q = 1 kg/m3, gs = gp = 0.5 Pa s. Three finite element meshes are used
in this subsection, see Table 1 and Fig. 19 for details. The cells spacing is five times smaller than the finite
element mesh spacing.
1
of a pipe; the three mesh used to check convergence

Subdivisions Vertexes Tetrahedrons

40 · 10 · 3 1804 7200
ediate 80 · 20 · 6 11,900 57,600

160 · 40 · 12 85,813 460,800

Fig. 19. Filling of a pipe; fine mesh.



Fig. 21. Filling of a pipe; top: rxx along the vertical line x = L1/2, 0 6 y 6 L2, z = L3/2, middle: rxy, bottom: horizontal velocity ux.

Fig. 20. Filling of a pipe. Left: position of the free surface at time t = 0, 0.6, 1.2, 1.8, 2.4, 3.0 s. Right: Velocity field close to the free surface
at time t = 1.8 s. Top: Newtonian flow. Bottom: viscoelastic flow (k = 5 s thus De = 5).
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We first consider the filling of the pipe, starting from an empty pipe. This experiment has been considered in
[25,40] and is sometimes called fountain flow. The imposed velocity and extra-stress profile at the inlet are
those corresponding to Poiseuille flow, see (16). Following [12], after some time the shape of free surface
should be close to a half circle. In Fig. 18, the velocity and the shape of the free surface is shown at several
times for a Newtonian flow. The mesh is the finest one and the time step is Dt = 0.03 s, so that the CFL
number of the cells – velocity times the time step divided by the cells spacing – equals 4.5. Away from the inlet,
the position of the free surface is the same for both Newtonian and viscoelastic (k = 5 s) flows, see Fig. 20. As
predicted theoretically [12], the shape is almost circular. Details of the fountain flow at the free surface is
provided in Fig. 20.

Once totally filled with liquid, the velocity and extra-stress must satisfy (16) in the whole pipe. Convergence
of the stationary solution is checked with k = 1 s, thus De = kU/L2 = 1, where U = 1 m/s is the average veloc-
ity. In Fig. 21, rxx, rxy and ux are plotted along the vertical line x = L1/2, 0 6 y 6 L2, z = L3/2. Convergence
can be observed even though boundary layer effects are present, this being classical with low order finite ele-
ments. In Fig. 22, the error in the L2 norm of rxx, rxy and ux is plotted versus the mesh size. Clearly order one
convergence rate is observed for the extra-stress, order two for the velocity, this being consistent with theoret-
ical predictions on simpler problems [3].
Fig. 23. Filament stretching. Aspect ratio L0/R0 = 19/30. Shape of the liquid region at time t = 0.5 (the Hencky strain is � ¼ _�0t ¼ 2:34);
left: Newtonian fluid; right: k = 0.421 s (De = 1.97).

Fig. 22. Filling of a pipe; error in the L2 norm with respect to the mesh size.
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5.3. Stretching of a filament

The flow of an Oldroyd-B fluid contained between two parallel coaxial circular disks with radius R0 =
0.003 m is considered. At the initial time, the distance between the two end-plates is L0 = 0.0019 m and the
liquid is at rest. Then, the top end-plate is moved vertically with velocity L0 _�0e _�0t. The model data (q, gs, gp, k,
_�0) are those of Section 5.1. The fine mesh of Section 5.1 was used with an initial time step Dt0 = 0.005 s, thus

the initial CFL number of the cells – velocity times the time step divided by the cells spacing – is close to one,
the time step at time tn being such that the distance of the moving end-plate between two time steps is constant,
that is
Fig. 24
column
k = 0.4
Dtn ¼ Dtn�1e� _�0Dtn�1

.

Therefore, the CFL number remains constant throughout the simulation. The shape of the liquid region at
time t = 0.5 s is represented in Fig. 23, for both Newtonian and non-Newtonian computations. 2D cuts along
plane y = 0 are show in Fig. 24. As reported in [43], the �necking� phenomena occurring in the central part of
the liquid for Newtonian fluids is not observed for viscoelastic fluids, due to strain hardening. This calculation
requires 2 h (resp. 24 h) on the coarse mesh (resp. fine mesh) using a single user Pentium 4 CPU 2.8 GHz, with
2Gb memory, under the Linux operating system. Most of the time is spent in solving the associated Stokes
problem. The memory usage is 200 Mb for the coarse mesh, resp. 1.6 Gb for the fine mesh.
. Filament stretching. Aspect ratio L0/R0 = 19/30. Shape of the liquid region in the y = 0 plane (the isovalues of u are shown);
1: � ¼ _�0t ¼ 0; column 2: � ¼ _�0t ¼ 0:96; column 3: � ¼ _�0t ¼ 1:96; column 4: � ¼ _�0t ¼ 2:55; top row: Newtonian fluid; bottom row:

21 s (De = 1.97).
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Unfortunately, we have not been able to reach high Hencky strains as reported in [43,8] for 2D axisymmet-
ric computations. The reasons may be the following: (i) When the Hencky strain is large, the filament is highly
stretched and the number of vertexes in the thinnest region of the filament decreases, and so does the accuracy.
Therefore, Lagrangian numerical models should be more accurate than Eulerian ones provided the mesh is not
too distorted. (ii) Surface tension, which should stabilize the filament shape, is not include in our model. (iii)
Since the filament breaking is due to 3D instabilities, 2D axisymmetric computations should be more stable
than 3D computations. At this point, it should be mentioned that in [29], the authors have also reported
the same discrepancies when comparing results output by their 3D Lagrangian model with experiments
[38]. Moreover, from Fig. 11 of [29], it is predicted that the onset of instability when De = 2 is obtained for
Hencky strains � . 2. This is in accordance with the results of Fig. 24.

We now show that our numerical model is capable to reproduce fingering instabilities reported in [29,2,21,9]
for non-Newtonian flows. Following Section 4.4 in [21], we take an aspect ratio L0/R0 = 1/20 (R0 = 0.003 m,
Fig. 25. Filament stretching, k = 0.421 s (De = 1.97), aspect ratio L0/R0 = 1/20. Left: shape of the liquid region at time t = 0 s, t = 0.33 s,
t = 0.66 s and t = 1 s. Right: horizontal cut at the middle of the liquid region.
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L0 = 0.00015 m), so that the Weissenberg number We ¼ DeR2
0=L2

0 is large. The finite element mesh has 50 ver-
texes along the radius and 25 vertexes along the height, thus the mesh size is 0.00006 m. The cells size is
0.00001 m and the initial time step is Dt0 = 0.01 s thus the CFL number of the cells – velocity times the time
step divided by the cells spacing – is close to one. The shape of the filament is reported in Fig. 25 and fingering
instabilities can be observed from the very beginning of the stretching, leading to branched structures, as
described in [21,2,9]. Clearly, such complex shapes cannot be obtained using Lagrangian models, the mesh
distortion would be too large. In Fig. 26, the mesh is changed in order to check the dependence of the results
with respect to the mesh topology. In Fig. 27, the same simulation is performed for a Newtonian fluid and no
fingering instabilities can be seen. We therefore conclude that these instabilities are essentially elastic, as
reported in [29]. However, it should be noted that fingering instabilities can also be obtained for Newtonian
flows, see for instance [36].

5.4. Jet buckling

The transient flow of a jet injected into a parallelepiped cavity is now reproduced. First, our 3D computa-
tions are compared to the 2D results reported in [40, Section 7.3]. Then, 3D computations are shown.

In order to compare our 3D computations to those of [41,40], we consider a thin cavity of width 0.05 m, var-
iable height H and depth 0.004 m, the width of the jet being D = 0.005 m and the vertical gravity g = 9.81 m/s2.
Slip boundary conditions apply whenever the jet hits the boundary of the cavity. The finite element mesh can be
Fig. 26. Filament stretching, k = 0.421 s (De = 1.97), aspect ratio L0/R0 = 1/20, time t = 1 s. Horizontal cut at the middle of the liquid
region. Left: the mesh has 200 vertexes along the diameter. Middle: the mesh has 204 vertexes along the diameter. Right: the middle mesh
is rotated by p/4.

Fig. 27. Filament stretching, Newtonian fluid, aspect ratio L0/R0 = 1/20. Left: shape of the liquid region at time t = 1 s. Right: horizontal
cut at the middle of the liquid region. Compare with Fig. 25.
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seen in Fig. 28; the mesh size is 0.00125 m, it has 16,605 vertexes and 76,800 tetrahedrons; it is obtained by gen-
erating 40 · 80 · 4 hexahedrons, each hexahedron being cut into 6 tetrahedrons. The cells size is 0.0002 m and
the time step is 0.004 s thus the CFL number of the cells – velocity times the time step divided by the cells spac-
ing – is 10.

From [41], the condition for a Newtonian jet to buckle is
Fig. 29. Jet buckling of a ”uid
(Re =
Re2
6

1

p
ðH=DÞ2:6 � 8:82:6

ðH=DÞ2:6
; ð17Þ
where Re = qUD/(gs + gp) is the Reynolds number, U being the inflow jet velocity at the top of the cavity. We
now check that our numerical model is consistent with such a condition. The fluid parameters for the New-
tonian case are q = 1030 kg/m3, gs + gp = 10.3 Pa s and k = 0 s. Firstly, we set U = 1 m/s, so that Re = 0.5
and find the critical cavity height H in order to obtain buckling. When H/D = 14 we observe no buckling
whereas buckling occurs when H/D = 16. This is consistent with relation (17) which predicts buckling when
H/D > 15.9. Secondly, we choose a constant ratio H/D = 20 and vary the jet velocity U in order to determine
the maximum Reynolds number for which buckling occurs. The results are reported in Fig. 29. The jet buckles
Y

Z
X

Fig. 28. Jet buckling in a thin cavity: the mesh.

in a thin cavity, H/D = 20. The first three figures correspond to Newtonian flows at time t = 0.408 s
0.2, 0.5, 0.7), the fourth figure corresponds to a viscoelastic flow at time t = 0.264 s (k = 0.1 s).



Fig. 30. Jet buckling in a thin cavity. Shape of the jet at time t = 0.1 s (first row), t = 0.2 s (second row), t = 0.3 s (third row), t = 0.4 s (last
row), Newtonian flow (first column), k = 0.01 s (second column), k = 0.1 s (third column), k = 1 s (last column).
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when Re = 0.2 and Re = 0.5 but does not buckle when Re = 0.7. This is again consistent with condition (17)
which yields buckling whenever Re 6 0.53. Finally, we set Re = 1, H/D = 20 so that no buckling occurs in the
Newtonian case and perform a viscoelastic computation with gs = 1.03, gp = 9.27 Pa s, k = 0.1 s. The result is
Fig. 31. Jet buckling in a thin cavity. Shape of the jet at time t = 0.5 s (first row), t = 0.6 s (second row), t = 0.7 s (third row), t = 0.8 s (last
row), Newtonian flow (first column), k = 0.01 s (second column), k = 0.1 s (third column), k = 1 s (last column).
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shown in Fig. 29, right and obviously buckling occurs. Other computations show that the jet buckles whenever
k < 0.005 s. We therefore conclude that our numerical model yields results which agree with condition (17) in
the Newtonian case and that this condition depends on k for viscoelastic flows.
Fig. 32. Jet buckling in a thick cavity. Shape of the jet at time t = 0.1 s (row 1), t = 0.2 s (row 2), t = 0.3 s (row 3), t = 0.4 s (row 4),
t = 0.5 s (row 5), Newtonian fluid (col. 1 and 2), k = 1 s (col. 3 and 4).
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We then compare our 3D viscoelastic computations to those 2D of [40], with H = 0.1 m (H/D = 20) and
U = 0.5 m/s (Re = 0.25), k ranges from 0 to 1 s so that De = kU/D ranges from 0 to 100. The shape of the
jet is shown in Figs. 30 and 31. As in [40], when the Newtonian jet starts to buckle, the non-Newtonian jet
Fig. 33. Jet buckling in a thick cavity. Shape of the jet at time t = 0.6 s (row 1), t = 0.7 s (row 2), t = 0.8 s (row 3), t = 0.9 s (row 4),
t = 1.6 s (row 5), Newtonian fluid (col. 1 and 2), k = 1 s (col. 3 and 4).
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has already produced many folds. However, we did not observe during the whole experiment a thin viscoelas-
tic jet as in [40] (time t = 0.3 s).

Simulations are now reported when the cavity is a thick cavity of width 0.05 m, depth 0.05 m and height
0.1 m, the diameter of the jet being D = 0.005 m. Liquid enters from the top of the cavity with vertical velocity
U = 0.5 m/s. The relaxation time k = 1 s so that De = 100. The finite element mesh has 503,171 vertexes and
2,918,760 tetrahedrons. The cells size is 0.0002 m and the time step is 0.001 s thus the CFL number of the cells
– velocity times the time step divided by the cells spacing – is 2.5. The shape of the jet is shown in Figs. 32 and
33 for Newtonian and viscoelastic flows. This computation took 64 h on a AMD opteron CPU with 8Gb
memory.

6. Conclusions

An Eulerian model based on the VOF formulation has been presented for the simulation of viscoelastic
flows with complex free surfaces in three space dimensions.

A splitting method is used for time discretization. The prediction step consists in solving three advection
problems, one for the volume fraction of liquid, one for the velocity field, one for the extra-stress. The correc-
tion step corresponds to solving an Oldroyd-B flow problem without advection.

Two different grids are used for space discretization. The three advection problems are solved on a fixed,
structured grid made out of small cubic cells, using a forward characteristics method. The viscoelastic flow
problem without advection is solved using continuous, piecewise linear stabilized finite elements on a fixed,
unstructured mesh of tetrahedrons.

Convergence of the numerical method is checked for two test cases, namely an elongational flow and the
filling of a pipe. Numerical results are then presented in the framework of the stretching of a filament. When
the aspect ratio is large, fingering instabilities are obtained. Jet buckling is also studied.
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